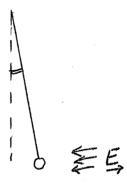
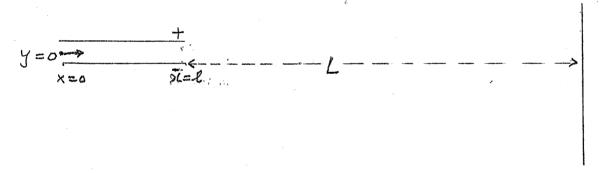
Problems: Week 4

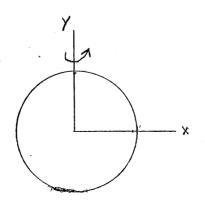
4-1. You are given a charge q and a device to measure force. How would you discover presence of an \underline{E} - field.


- 4-2. A point charge is located at r = 0 and produces an \underline{E} field. of $-100N/C\hat{r}$ at $\underline{r} = 2m\hat{r}$.
 - (i) What is the charge? (ii) What is the magnitude and direction of \vec{E} at $\vec{r} = 4m\hat{x}$?

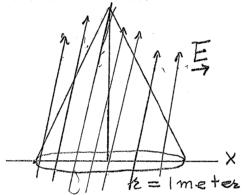
4-3. A dipole is located on the x-axis as shown. Charges of $\mp 10\mu C$ fixed at $\mp 0.01m$. Show that at y very large (y >> 0.1m) the \underline{E} field is


$$\underline{E} = -\frac{1}{4\Pi \varepsilon_0} \frac{\underline{P}}{y^3} \hat{x}$$
Where $\underline{P} = 2 \times 10^{-7} C - m\hat{x}$

$$-10\mu C + 10\mu C$$


- 4-4. A small sphere of mass 0.001kg and charge q is hanging at an angle of 10° with respect to the vertical in a constant E field of $-100N/C\hat{x}$.
 - (i) Is q positive or negative? Why? (ii) What is the magnitude of q?

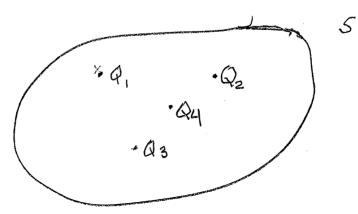
- 4-5. Shown are two parallel plates which produce a constant $\underline{E} = -50N/C\hat{y}$, for $0 \le x \le 0.15m$. At x = 0, y = 0 an electron with velocity $y = 10^7 m/\sec \hat{x}$ is introduced between the plates.
 - (i) What is the acceleration of the electron? (ii) What is the velocity when x = l? (iii) What is its position when x = l? (iv) Where will it go and hit a screen which is located at L = 1m? (incidentally, this device is used to move electrons across the screen of an oscilloscope/TV) *Neglect gravity*


4-6. A flat disk of radius 1m is rotated about the y-axis in a region where a constant $\underline{E} = 60N/C$ \hat{x} is present. Calculate the maximum and minimum flux of \underline{E} through the disk.

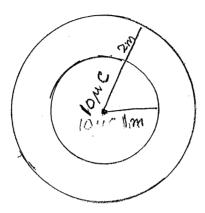
4-7. A point charge Q is located at the origin (r = 0). Knowing that \underline{E} - field lines can only stop/start at a charge, show that the total flux of \underline{E} through any closed surface enclosing Q is

$$\Sigma_c \, \underline{E} \cdot \underline{\Delta} \underline{A} \equiv \frac{Q}{\varepsilon_0}$$

- 4-8. Shown is a cone lying in a uniform \underline{E} field of magnitude 30N/C directed at an angle of 30° with respect to the cone axis (y-axis).
 - (i) Are there any sources/sinks of \underline{E} inside the cone? Why? (ii) What is the flux of \underline{E} through the curved surface of the cone?



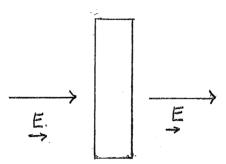
4-9. Inside a closed shell S the following charges are located


$$Q_1 = 10\mu C$$
, $Q_2 = 20\mu C$

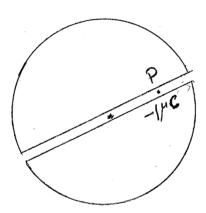
$$Q_3 = 30\mu C$$
, $Q_4 = -60\mu C$

(i) What is the total flux of \underline{E} through S? Why? (ii) What is the \underline{E} - field at any point on S? Why?

4-10. Shown is a conducting sphere with internal radius 1m and external radius 2m. If there is a charge of $10\mu C$ located at the center of the sphere (r = 0) what charges will appear on its surfaces and what are the E fields at r < 1m and r > 2m?



4-11. A conducting sphere of diameter 1m carries a charge of $100\mu C$. Under stationary conditions, where would this charge be located? Why?


4-12. In problem 4-11, what would be the force experienced by a point charge of $1\mu C$ if it was located at

(i) 0.49m (ii) 0.51m from the center of the conducting sphere? Why?

4-13. A conductor of thickness d is placed in a uniform \underline{E} -field, \underline{E} =100N/C \hat{x} as shown. Under stationary conditions what are the charge densities that appear on its surface? Why?

4-14. An insulating sphere of radius 1m has a small diametric hole in it as shown. It carries a charge of 50 μ C uniformly distributed over its volume. If we release a charge q=-1 μ C at the point P what will be the motion of q? Why?

4-15. What is a conservative force? Give one example.